算法常用的解题思路---快速排序及优化

Posted by Sunfy on 2021-07-14
Words 4k and Reading Time 19 Minutes
Viewed Times
Viewed Times
Visitors In Total

快速排序及优化


快速排序算法通过多次比较和交换来实现排序,其排序流程如下:

(1)首先设定一个分界值,通过该分界值将数组分成左右两部分。

(2)将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。此时,左边部分中各元素都小于或等于分界值,而右边部分中各元素都大于或等于分界值。

(3)然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。

(4)重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。

快速排序及优化(Java实现)

一. 普通快速排序

找一个基准值base,然后一趟排序后让base左边的数都小于base,base右边的数都大于等于base。再分为两个子数组的排序。如此递归下去。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
public class QuickSort {

public static <T extends Comparable<? super T>> void sort(T[] arr) {
sort(arr, 0, arr.length - 1);
}

public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right) {
if (left >= right) return;
int p = partition(arr, left, right);
sort(arr, left, p - 1);
sort(arr, p + 1, right);
}

private static <T extends Comparable<? super T>> int partition(T[] arr, int left, int right) {
T base = arr[left];
int j = left;
for (int i = left + 1; i <= right; i++) {
if (base.compareTo(arr[i]) > 0) {
j++;
swap(arr, j, i);
}
}
swap(arr, left, j);
return j;//返回一躺排序后基准值的下角标
}

public static void swap(Object[] arr, int i, int j) {
if (i != j) {
Object temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}

private static void printArr(Object[] arr) {
for (Object o : arr) {
System.out.print(o);
System.out.print("\t");
}
System.out.println();
}

public static void main(String args[]) {
Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
printArr(arr);//3 5 1 7 2 9 8 0 4 6
sort(arr);
printArr(arr);//0 1 2 3 4 5 6 7 8 9
}
}

二. 快速排序优化:随机选取基准值base

在数组几乎有序时,快排性能不好(因为每趟排序后,左右两个子递归规模相差悬殊,大的那部分最后很可能会达到O(n^2))。

解决:基准值随机地选取,而不是每次都取第一个数。这样就不会受“几乎有序的数组”的干扰了。但是对“几乎乱序的数组”的排序性能可能会稍微下降,至少多了排序前交换的那部分,乱序时这个交换没有意义…有很多“运气”成分..

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
public class QuickSort {

public static <T extends Comparable<? super T>> void sort(T[] arr) {
sort(arr, 0, arr.length - 1);
}

public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right) {
if (left >= right) return;
int p = partition(arr, left, right);
sort(arr, left, p - 1);
sort(arr, p + 1, right);
}

private static <T extends Comparable<? super T>> int partition(T[] arr, int left, int right) {
//排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。
//就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度
swap(arr,left,(int)(Math.random()*(right - left + 1)+left));

T base = arr[left];
int j = left;
for (int i = left + 1; i <= right; i++) {
if (base.compareTo(arr[i]) > 0) {
j++;
swap(arr, j, i);
}
}
swap(arr, left, j);
return j;//返回一躺排序后,基准值的下角标
}

public static void swap(Object[] arr, int i, int j) {
if (i != j) {
Object temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}

private static void printArr(Object[] arr) {
for (Object o : arr) {
System.out.print(o);
System.out.print("\t");
}
System.out.println();
}

public static void main(String args[]) {
Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
printArr(arr);//3 5 1 7 2 9 8 0 4 6
sort(arr);
printArr(arr);//0 1 2 3 4 5 6 7 8 9
}
}

三. 快速排序继续优化:配合着使用插入排序

快排是不断减小问题规模来解决子问题的,需要不断递归。但是递归到规模足够小时,如果继续采用这种 不稳定+递归 的方式执行下去,效率不见得会很好。

所以当问题规模较小时,近乎有序时,插入排序表现的很好。Java自带的Arrays.sort()里经常能看到这样的注释:“Use insertion sort on tiny arrays”,“Insertion sort on smallest arrays”

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
public class QuickSort {

public static <T extends Comparable<? super T>> void sort(T[] arr) {
sort(arr, 0, arr.length - 1, 16);
}

/**
* @param arr 待排序的数组
* @param left 左闭
* @param right 右闭
* @param k 当快排递归到子问题的规模 <= k 时,采用插入排序优化
* @param <T> 泛型,待排序可比较类型
*/
public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right, int k) {
// 规模小时采用插入排序
if (right - left <= k) {
insertionSort(arr, left, right);
return;
}
int p = partition(arr, left, right);
sort(arr, left, p - 1, k);
sort(arr, p + 1, right, k);
}

public static <T extends Comparable<? super T>> void insertionSort(T[] arr, int l, int r) {
for (int i = l + 1; i <= r; i++) {
T cur = arr[i];
int j = i - 1;
for (; j >= 0 && cur.compareTo(arr[j]) < 0; j--) {
arr[j + 1] = arr[j];
}
arr[j + 1] = cur;
}
}

private static <T extends Comparable<? super T>> int partition(T[] arr, int left, int right) {
//排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。
//就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度
swap(arr, left, (int) (Math.random() * (right - left + 1) + left));

T base = arr[left];
int j = left;
for (int i = left + 1; i <= right; i++) {
if (base.compareTo(arr[i]) > 0) {
j++;
swap(arr, j, i);
}
}
swap(arr, left, j);
return j;//返回一躺排序后,基准值的下角标
}


public static void swap(Object[] arr, int i, int j) {
if (i != j) {
Object temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}

private static void printArr(Object[] arr) {
for (Object o : arr) {
System.out.print(o);
System.out.print("\t");
}
System.out.println();
}

public static void main(String args[]) {
Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
printArr(arr);//3 5 1 7 2 9 8 0 4 6
sort(arr);
printArr(arr);//0 1 2 3 4 5 6 7 8 9
}
}

四. 快速排序继续优化:两路快排

在最开始的普通快速排序说过,让基准值base左边的都比base小,而base右边的都大于等于base。等于base的这些会聚集到右侧(或者稍微改改大小关系就会聚集到左侧)。总之就会聚集到一边。这样在数组中重复数字很多的时候,就又会导致两边子递归规模差距悬殊的情况。这时想把等于base的那些数分派到base两边,而不是让他们聚集到一起。

(注:测试代码的时候,最好把插入排序那部分注视掉,向我下面代码中那样…不然数据量小于k=16的时候执行的是插入排序…..)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
public class QuickSort {

public static <T extends Comparable<? super T>> void sort(T[] arr) {
sort(arr, 0, arr.length - 1, 16);
}

/**
* @param arr 待排序的数组
* @param left 左闭
* @param right 右闭
* @param k 当快排递归到子问题的规模 <= k 时,采用插入排序优化
* @param <T> 泛型,待排序可比较类型
*/
public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right, int k) {
// 规模小时采用插入排序
// if (right - left <= k) {
// insertionSort(arr, left, right);
// return;
// }

if (left >= right) return;

int p = partition(arr, left, right);
sort(arr, left, p - 1, k);
sort(arr, p + 1, right, k);
}

public static <T extends Comparable<? super T>> void insertionSort(T[] arr, int l, int r) {
for (int i = l + 1; i <= r; i++) {
T cur = arr[i];
int j = i - 1;
for (; j >= 0 && cur.compareTo(arr[j]) < 0; j--) {
arr[j + 1] = arr[j];
}
arr[j + 1] = cur;
}
}

private static <T extends Comparable<? super T>> int partition(T[] arr, int left, int right) {
//排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。
//就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度
swap(arr, left, (int) (Math.random() * (right - left + 1) + left));

T base = arr[left];//基准值,每次都把这个基准值抛出去,看成[left+1.....right]左闭右闭区间的排序

int i = left + 1; //对于上一行提到的[left+1.....right]区间,i表示 [left+1......i)左闭右开区间的值都小于等于base。

int j = right;//对于上二行提到的[left+1.....right]区间,j表示 (j......right]左开右闭区间的值都大于等于base。

while (true) {
//从左到右扫描,扫描出第一个比base大的元素,然后i停在那里。
while (i <= right && arr[i].compareTo(base) < 0) i++;

//从右到左扫描,扫描出第一个比base小的元素,然后j停在那里。
while (j >= left && arr[j].compareTo(base) > 0) j--;

if (i > j) {//虽说是i>j,但其实都是以j=i-1为条件结束的
break;
}
swap(arr, i++, j--);
}

swap(arr, left, j);
return j;//返回一躺排序后,基准值的下角标
}


public static void swap(Object[] arr, int i, int j) {
if (i != j) {
Object temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}

private static void printArr(Object[] arr) {
for (Object o : arr) {
System.out.print(o);
System.out.print("\t");
}
System.out.println();
}

public static void main(String args[]) {
Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
printArr(arr);//3 5 1 7 2 9 8 0 4 6
sort(arr);
printArr(arr);//0 1 2 3 4 5 6 7 8 9
}
}

五. 快速排序继续优化:两路快排 不用swap, 用直接赋值

上面的两路在找到大于base的值和小于base的值时,用的是swap()方法来进行交换。两数交换涉及到第三个变量temp的操作,多了读写操作。接下来用直接赋值的方法,把小于的放到右边,大于的放到左边,当i和j相遇时,那个位置就是base该放的地方。至此一趟完成。递归即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
public class QuickSort {

public static <T extends Comparable<? super T>> void sort(T[] arr) {
sort(arr, 0, arr.length - 1, 16);
}

/**
* @param arr 待排序的数组
* @param left 左闭
* @param right 右闭
* @param k 当快排递归到子问题的规模 <= k 时,采用插入排序优化
* @param <T> 泛型,待排序可比较类型
*/
public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right, int k) {
// 规模小时采用插入排序
// if (right - left <= k) {
// insertionSort(arr, left, right);
// return;
// }

if (left >= right) return;

int p = partition(arr, left, right);
sort(arr, left, p - 1, k);
sort(arr, p + 1, right, k);
}

public static <T extends Comparable<? super T>> void insertionSort(T[] arr, int l, int r) {
for (int i = l + 1; i <= r; i++) {
T cur = arr[i];
int j = i - 1;
for (; j >= 0 && cur.compareTo(arr[j]) < 0; j--) {
arr[j + 1] = arr[j];
}
arr[j + 1] = cur;
}
}

private static <T extends Comparable<? super T>> int partition(T[] arr, int left, int right) {
//排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。
//就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度
swap(arr, left, (int) (Math.random() * (right - left + 1) + left));

T base = arr[left];//基准值,每次都把这个基准值抛出去,看成[left+1.....right]左闭右闭区间的排序

int i = left; //对于上一行提到的[left+1.....right]区间,i表示 [left+1......i)左闭右开区间的值都小于等于base。

int j = right;//对于上二行提到的[left+1.....right]区间,j表示 (j......right]左开右闭区间的值都大于等于base。

while (i < j) {
//从右到左扫描,扫描出第一个比base小的元素,然后j停在那里。
while (j > i && arr[j].compareTo(base) > 0) j--;

arr[i] = arr[j];

//从左到右扫描,扫描出第一个比base大的元素,然后i停在那里。
while (i < j && arr[i].compareTo(base) < 0) i++;

arr[j] = arr[i];

}

arr[j] = base;
return j;//返回一躺排序后,基准值的下角标
}


public static void swap(Object[] arr, int i, int j) {
if (i != j) {
Object temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}

private static void printArr(Object[] arr) {
for (Object o : arr) {
System.out.print(o);
System.out.print("\t");
}
System.out.println();
}

public static void main(String args[]) {
Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
printArr(arr);//3 5 1 7 2 9 8 0 4 6
sort(arr);

printArr(arr);//0 1 2 3 4 5 6 7 8 9
}
}

六. 快速排序继续优化:当大量数据,且重复数多时,用三路快排

把数组分为三路,第一路都比base小,第二路都等于base,第三路都大于base。

用指针从前到后扫描,如果:

1.cur指向的数小于base,那么:交换arr[cur]和arr[i]的值,然后i++,cur++。

2.cur指向的数等于base, 那么:cur++

3.cur指向的数大于base,那么:交换arr[cur]和arr[j]的值,然后j—。

当cur > j的时候说明三路都已经完成。

1251417-20171130124622198-29578695

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
public class QuickSort {

public static <T extends Comparable<? super T>> void sort(T[] arr) {
sort(arr, 0, arr.length - 1, 16);
}

/**
* @param arr 待排序的数组
* @param left 左闭
* @param right 右闭
* @param k 当快排递归到子问题的规模 <= k 时,采用插入排序优化
* @param <T> 泛型,待排序可比较类型
*/
public static <T extends Comparable<? super T>> void sort(T[] arr, int left, int right, int k) {
// 规模小时采用插入排序
// if (right - left <= k) {
// insertionSort(arr, left, right);
// return;
// }

if (left >= right) return;
int[] ret = partition(arr, left, right);
sort(arr, left, ret[0], k);
sort(arr, ret[1], right, k);
}

public static <T extends Comparable<? super T>> void insertionSort(T[] arr, int l, int r) {
for (int i = l + 1; i <= r; i++) {
T cur = arr[i];
int j = i - 1;
for (; j >= 0 && cur.compareTo(arr[j]) < 0; j--) {
arr[j + 1] = arr[j];
}
arr[j + 1] = cur;
}
}

/**
* @param arr 待排序的数组
* @param left 待排序数组的左边界
* @param right 待排序数组的右边界
* @param <T> 泛型
* @return
*/
private static <T extends Comparable<? super T>> int[] partition(T[] arr, int left, int right) {
//排序前,先让基准值和随机的一个数进行交换。这样,基准值就有随机性。
//就不至于在数组相对有序时,导致左右两边的递归规模不一致,产生最坏时间复杂度
swap(arr, left, (int) (Math.random() * (right - left + 1) + left));

T base = arr[left];//基准值,每次都把这个基准值抛出去,看成[left+1.....right]左闭右闭区间的排序

//三路快排分为下面这三个路(区间)
int i = left; // left表示,[lleft...left) 左闭右开区间里的数都比base小
int j = right;// left表示,(rright...right] 左开右闭区间里的数都比base大
int cur = i;//用cur来遍历数组。[left...cur)左闭右开区间里的数都等于base

while (cur <= j) {
if (arr[cur].compareTo(base) == 0) {
cur++;
} else if (arr[cur].compareTo(base) < 0) {
swap(arr, cur++, i++);
} else {
swap(arr, cur, j--);
}
}
return new int[]{i - 1, j + 1};//[i...j]都等于base,子问题就只需要解决i左边和j右边就行了
}


public static void swap(Object[] arr, int i, int j) {
if (i != j) {
Object temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}

private static void printArr(Object[] arr) {
for (Object o : arr) {
System.out.print(o);
System.out.print("\t");
}
System.out.println();
}

public static void main(String args[]) {
Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
printArr(arr);//3 5 1 7 2 9 8 0 4 6
sort(arr);

printArr(arr);//0 1 2 3 4 5 6 7 8 9
}
}

Copyright 2021 sunfy.top ALL Rights Reserved

...

...

00:00
00:00