数据结构测试题---链表

Posted by Sunfy on 2021-08-30
Words 2k and Reading Time 7 Minutes
Viewed Times
Viewed Times
Visitors In Total

141. 环形链表

给定一个链表,判断链表中是否有环。

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。

如果链表中存在环,则返回 true 。 否则,返回 false

进阶:

你能用 O(1)(即,常量)内存解决此问题吗?

示例 1:

img

1
2
3
输入:head = [3,2,0,-4], pos = 1
输出:true
解释:链表中有一个环,其尾部连接到第二个节点。

示例 2:

img

1
2
3
输入:head = [1,2], pos = 0
输出:true
解释:链表中有一个环,其尾部连接到第一个节点。

示例 3:

img

1
2
3
输入:head = [1], pos = -1
输出:false
解释:链表中没有环。
1
2
3
4
提示:
链表中节点的数目范围是 [0, 104]
-105 <= Node.val <= 105
pos 为 -1 或者链表中的一个 有效索引 。

方法一:哈希表

思路及算法

最容易想到的方法是遍历所有节点,每次遍历到一个节点时,判断该节点此前是否被访问过。

具体地,我们可以使用哈希表来存储所有已经访问过的节点。每次我们到达一个节点,如果该节点已经存在于哈希表中,则说明该链表是环形链表,否则就将该节点加入哈希表中。重复这一过程,直到我们遍历完整个链表即可。

1
2
3
4
5
6
7
8
9
10
11
12
public class Solution {
public boolean hasCycle(ListNode head) {
Set<ListNode> seen = new HashSet<ListNode>();
while (head != null) {
if (!seen.add(head)) {
return true;
}
head = head.next;
}
return false;
}
}

复杂度分析

  • 时间复杂度:O(N),其中 N 是链表中的节点数。最坏情况下我们需要遍历每个节点一次。
  • 空间复杂度:O(N),其中 N 是链表中的节点数。主要为哈希表的开销,最坏情况下我们需要将每个节点插入到哈希表中一次。

方法二:快慢指针

思路及算法

本方法需要读者对「Floyd 判圈算法」(又称龟兔赛跑算法)有所了解。

我们可以根据上述思路来解决本题。具体地,我们定义两个指针,一快一满。慢指针每次只移动一步,而快指针每次移动两步。初始时,慢指针在位置 head,而快指针在位置 head.next。这样一来,如果在移动的过程中,快指针反过来追上慢指针,就说明该链表为环形链表。否则快指针将到达链表尾部,该链表不为环形链表。

list1

细节

为什么我们要规定初始时慢指针在位置 head,快指针在位置 head.next,而不是两个指针都在位置 head(即与「乌龟」和「兔子」中的叙述相同)?

观察下面的代码,我们使用的是 while 循环,循环条件先于循环体。由于循环条件一定是判断快慢指针是否重合,如果我们将两个指针初始都置于 head,那么 while 循环就不会执行。因此,我们可以假想一个在 head 之前的虚拟节点,慢指针从虚拟节点移动一步到达 head,快指针从虚拟节点移动两步到达 head.next,这样我们就可以使用 while 循环了。

当然,我们也可以使用 do-while 循环。此时,我们就可以把快慢指针的初始值都置为 head

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class Solution {
public boolean hasCycle(ListNode head) {
if (head == null || head.next == null) {
return false;
}
ListNode slow = head;
ListNode fast = head.next;
while (slow != fast) {
if (fast == null || fast.next == null) {
return false;
}
slow = slow.next;
fast = fast.next.next;
}
return true;
}
}

复杂度分析

  • 时间复杂度:O(N),其中 N 是链表中的节点数。

    • 当链表中不存在环时,快指针将先于慢指针到达链表尾部,链表中每个节点至多被访问两次。
    • 当链表中存在环时,每一轮移动后,快慢指针的距离将减小一。而初始距离为环的长度,因此至多移动 N 轮。
  • 空间复杂度:O(1)。我们只使用了两个指针的额外空间。

21. 合并两个有序链表

站内链接

203. 移除链表元素

给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val == val 的节点,并返回 新的头节点

示例 1:

img

1
2
3
4
5
6
7
8
9
输入:head = [1,2,6,3,4,5,6], val = 6
输出:[1,2,3,4,5]

示例 2:
输入:head = [], val = 1
输出:[]
示例 3:
输入:head = [7,7,7,7], val = 7
输出:[]

提示:

  • 列表中的节点数目在范围 [0, 104]
  • 1 <= Node.val <= 50
  • 0 <= val <= 50

方法一:递归

image-20210830133909515

1
2
3
4
5
6
7
8
9
class Solution {
public ListNode removeElements(ListNode head, int val) {
if (head == null) {
return head;
}
head.next = removeElements(head.next, val);
return head.val == val ? head.next : head;
}
}

复杂度分析

  • 时间复杂度:O(n),其中 n 是链表的长度。递归过程中需要遍历链表一次。
  • 空间复杂度:O(n),其中 n 是链表的长度。空间复杂度主要取决于递归调用栈,最多不会超过 n 层。

方法二:迭代

image-20210830134023763

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Solution {
public ListNode removeElements(ListNode head, int val) {
ListNode dummyHead = new ListNode(0);
dummyHead.next = head;
ListNode temp = dummyHead;
while (temp.next != null) {
if (temp.next.val == val) {
temp.next = temp.next.next;
} else {
temp = temp.next;
}
}
return dummyHead.next;
}
}

复杂度分析

  • 时间复杂度:O(n),其中 n 是链表的长度。需要遍历链表一次。
  • 空间复杂度:O(1)

206. 反转链表

站内链接

83. 删除排序链表中的重复元素

存在一个按升序排列的链表,给你这个链表的头节点 head ,请你删除所有重复的元素,使每个元素 只出现一次

返回同样按升序排列的结果链表。

示例 1:

img

1
2
输入:head = [1,1,2]
输出:[1,2]

示例 2:

img

1
2
输入:head = [1,1,2,3,3]
输出:[1,2,3]

提示:

  • 链表中节点数目在范围 [0, 300]
  • -100 <= Node.val <= 100
  • 题目数据保证链表已经按升序排列

方法一:一次遍历

思路与算法

由于给定的链表是排好序的,因此重复的元素在链表中出现的位置是连续的,因此我们只需要对链表进行一次遍历,就可以删除重复的元素。

具体地,我们从指针 cur 指向链表的头节点,随后开始对链表进行遍历。如果当前 cur 与cur.next 对应的元素相同,那么我们就将cur.next 从链表中移除;否则说明链表中已经不存在其它与 cur 对应的元素相同的节点,因此可以将 cur 指向cur.next。

当遍历完整个链表之后,我们返回链表的头节点即可。

细节

当我们遍历到链表的最后一个节点时,cur.next 为空节点,如果不加以判断,访问cur.next 对应的元素会产生运行错误。因此我们只需要遍历到链表的最后一个节点,而不需要遍历完整个链表。

代码

注意下面 C++ 代码中并没有释放被删除的链表节点的空间。如果在面试中遇到本题,读者需要针对这一细节与面试官进行沟通。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public ListNode deleteDuplicates(ListNode head) {
if (head == null) {
return head;
}

ListNode cur = head;
while (cur.next != null) {
if (cur.val == cur.next.val) {
cur.next = cur.next.next;
} else {
cur = cur.next;
}
}

return head;
}
}

复杂度分析

  • 时间复杂度:O(n),其中 n是链表的长度。
  • 空间复杂度:O(1)

Copyright 2021 sunfy.top ALL Rights Reserved

...

...

00:00
00:00