数据结构测试题---栈/队列

Posted by Sunfy on 2021-09-02
Words 1.3k and Reading Time 5 Minutes
Viewed Times
Viewed Times
Visitors In Total

20. 有效的括号

站内链接

给定一个只包括 '('')''{''}''['']' 的字符串 s ,判断字符串是否有效。

有效字符串需满足:

  1. 左括号必须用相同类型的右括号闭合。
  2. 左括号必须以正确的顺序闭合。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
示例 1:
输入:s = "()"
输出:true
示例 2:
输入:s = "()[]{}"
输出:true
示例 3:
输入:s = "(]"
输出:false
示例 4:
输入:s = "([)]"
输出:false
示例 5:
输入:s = "{[]}"
输出:true

提示:

  • 1 <= s.length <= 104
  • s 仅由括号 '()[]{}' 组成

方法一:栈

判断括号的有效性可以使用「栈」这一数据结构来解决。

我们遍历给定的字符串 s。当我们遇到一个左括号时,我们会期望在后续的遍历中,有一个相同类型的右括号将其闭合。由于后遇到的左括号要先闭合,因此我们可以将这个左括号放入栈顶。

当我们遇到一个右括号时,我们需要将一个相同类型的左括号闭合。此时,我们可以取出栈顶的左括号并判断它们是否是相同类型的括号。如果不是相同的类型,或者栈中并没有左括号,那么字符串 s 无效,返回 False。为了快速判断括号的类型,我们可以使用哈希表存储每一种括号。哈希表的键为右括号,值为相同类型的左括号。

在遍历结束后,如果栈中没有左括号,说明我们将字符串 s 中的所有左括号闭合,返回 True,否则返回 False

注意到有效字符串的长度一定为偶数,因此如果字符串的长度为奇数,我们可以直接返回 False,省去后续的遍历判断过程。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
public boolean isValid(String s) {
int n = s.length();
if (n % 2 == 1) {
return false;
}

Map<Character, Character> pairs = new HashMap<Character, Character>() {{
put(')', '(');
put(']', '[');
put('}', '{');
}};
Deque<Character> stack = new LinkedList<Character>();
for (int i = 0; i < n; i++) {
char ch = s.charAt(i);
if (pairs.containsKey(ch)) {
if (stack.isEmpty() || stack.peek() != pairs.get(ch)) {
return false;
}
stack.pop();
} else {
stack.push(ch);
}
}
return stack.isEmpty();
}
}

复杂度分析

  • 时间复杂度:O(n),其中 n 是字符串 s 的长度。
  • 空间复杂度:O(n+∣Σ∣),其中 Σ 表示字符集,本题中字符串只包含 6 种括号,∣Σ∣=6。栈中的字符数量为 O(n),而哈希表使用的空间为 O(∣Σ∣),相加即可得到总空间复杂度。

232. 用栈实现队列

请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty):

实现 MyQueue 类:

  • void push(int x) 将元素 x 推到队列的末尾
  • int pop() 从队列的开头移除并返回元素
  • int peek() 返回队列开头的元素
  • boolean empty() 如果队列为空,返回 true ;否则,返回 false

说明:

  • 你只能使用标准的栈操作 —— 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的。
  • 你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。

进阶:

  • 你能否实现每个操作均摊时间复杂度为 O(1) 的队列?换句话说,执行 n 个操作的总时间复杂度为 O(n) ,即使其中一个操作可能花费较长时间。

实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
输入:
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 1, 1, false]

解释:
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false

提示:

  • 1 <= x <= 9
  • 最多调用 100 次 push、pop、peek 和 empty
  • 假设所有操作都是有效的 (例如,一个空的队列不会调用 pop 或者 peek 操作)

方法一:双栈

思路

将一个栈当作输入栈,用于压入 push 传入的数据;另一个栈当作输出栈,用于 poppeek 操作。

每次 poppeek 时,若输出栈为空则将输入栈的全部数据依次弹出并压入输出栈,这样输出栈从栈顶往栈底的顺序就是队列从队首往队尾的顺序。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class MyQueue {
Deque<Integer> inStack;
Deque<Integer> outStack;

public MyQueue() {
inStack = new LinkedList<Integer>();
outStack = new LinkedList<Integer>();
}

public void push(int x) {
inStack.push(x);
}

public int pop() {
if (outStack.isEmpty()) {
in2out();
}
return outStack.pop();
}

public int peek() {
if (outStack.isEmpty()) {
in2out();
}
return outStack.peek();
}

public boolean empty() {
return inStack.isEmpty() && outStack.isEmpty();
}

private void in2out() {
while (!inStack.isEmpty()) {
outStack.push(inStack.pop());
}
}
}

复杂度分析

  • 时间复杂度:pushemptyO(1)poppeek 为均摊 O(1)。对于每个元素,至多入栈和出栈各两次,故均摊复杂度为 O(1)
  • 空间复杂度:O(n)。其中 n 是操作总数。对于有 npush 操作的情况,队列中会有 n 个元素,故空间复杂度为 O(n)

Copyright 2021 sunfy.top ALL Rights Reserved

...

...

00:00
00:00